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This study presents a novel two-way state-#ow (TWSF) graph model to graphically
represent the acoustic wave in tubes in terms of the states #ow, pressure and velocity. The
proposed model is then used to derive analytical solutions of the acoustic pressure and
velocity and acoustic properties of the stepwise tube, such as the input impedance and
resonance frequency. Owing to the novel structure of the proposed model, the graph model
of a steeped tube can be obtained by directly cascade connection of that of each section.
Moreover, the exact and analytical results for the tubes can be directly calculated by
topology methods according to the constructed graph model without solving multiple
coupling di!erential equations.
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1. INTRODUCTION

Propagation of plane waves in tubes is an important topic in acoustic applications on
acoustic horns and "lters, mu%ers, and musical instruments. For single uniform tubes, exact
solutions for the propagation and properties of sound in the tube with various boundary
conditions have been proposed in many books [1, 2]. Wave propagation in the tubes of
conical and exponential cross-sections have also investigated analytically [2, 3]. For the
tubes of stepwise cross-section, it is convenient to approach it by a cascade of multiple
uniform tubes. Typical technique for the analysis of this problem is using an electroacoustic
analogue, by which the acoustic system is analogy to the electrical components and network
[4, 5]. Then, multiple coupled di!erential equations can be formulated using the electrical
theory. Several numerical methods have been proposed for solving these equations [3, 5}7].
Recently, an algebraic algorithm has been developed to obtain the analytical solution of the
velocity ratio of the system based on transfer matrix method [8]. However, it is di$cult to
obtain the analytical and exact solutions of the acoustic states, velocity and pressure, inside
the tube by the classical methods.

In this paper, analytical and exact solutions for plane wave propagation in a tube with
stepwise cross-section are proposed. A two-way state-#ow (TWSF) graph model [9, 10] for
the representation of the acoustic behavior in a uniform acoustic tube is "rstly developed.
The graph model of the stepped tube is connecting each uniform segment in series. The
acoustical pressure and velocity in the tube, and its input impedance and the resonance
frequency of the tube are derived. Finally, some numerical examples are examined to
illustrate the performance of the proposed method.

2. TWSF GRAPH MODEL OF UNIFORM TUBE

A stepwise tube consisting of N uniform sections with stationary medium is considered
for the investigation. It is assumed that the plane acoustic wave (one-dimensional wave) is
0022-460X/00/360105#09 $35.00/0 ( 2000 Academic Press



Figure 1. Schematic diagram of a uniform tube.

106 W.-J. HSUEH
propagated through each uniform section. The description of wave propagation in a tube
with uniform cross-section, as shown in Figure 1, is governed by the wave equation

L2p (x, t)

Lt2
!c2

L2p (x, t)

Lx2
"0, (1)

where p is the acoustic pressure, and c is the phase speed of the wave propagation. The
general solution for the acoustic pressure in the tube is given as

p(x, t)"f
1
(ct!x)#f

2
(ct#x), (2)

where f
1

and f
2

are the arbitrary functional relationships of the parameters ct!x and
ct#x respectively. This expression represents a pair of displacement waves propagating in
the positive and negative directions along the axis of the tube. When the motion of the
particles of the #uid as a function of harmonic wave is considered in this investigation, the
solution can be expressed by complex form as

p (x, t)"(P`e~+kx#P~e+kx)e~+ut, (3)

where k is the wave number de"ned as k"u/c. P` is the complex pressure amplitude of
a plane wave travelling in the positive direction, and P~ is the amplitude of the wave
travelling in the negative direction. Both amplitudes are dependent on the length and the
complex pressure amplitude at both terminals of the tube given by

P`"

P
L
e+kl!P

R
2j sin kl

, P~"

P
R
!P

L
e~+kl

2 j sin kl
, (4, 5)

where l is the length of the tube, P
L

and P
R

are the complex pressure amplitude at the
terminals of x"0 and x"l respectively.

Moreover, the relationships between the acoustic volume velocity u and pressure p at any
location x should satisfy the dynamical equilibrium equation

Lu (x, t)

Lt
#

A

o
0

Lp(x, t)

Lx
"0, (6)

where A is the cross-sectional area of the tube. Substituting equation (3) into equation (6),
the volume velocity in the tube can be expressed as

u(x, t)"
A

co
0

(P`e~+kx!P~e+kx)e+ut. (7)

According to equations (3) and (7), we see that the complex amplitudes of the pressure and
volume velocity at both ends of the tube are dependent. If the volume velocity at the left end



Figure 2. TWSF graph model of the uniform tube.

Figure 3. Schematic diagram of an N stepped tube.
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where x"0, ;
L
, and the acoustic pressure P

R
at the other end where x"l are chosen as

input states, the other two states, volume velocity ;
R

and acoustic pressure P
L
, should be

a function of these two selected input states as follows:

;
R
"cos klA!

jA tan kl

co
0

P
L
#;

LB, (8)

P
L
"cos klA

jco
0
tan kl

A
;
R
#P

RB. (9)

Based on equations (8) and (9), the relationships between each complex amplitude of
pressure and volume velocity at both ends of the tube can be expressed as a TWSF graph
model as shown in Figure 2.

A stepwise tube consisting of N uniform sections with di!erent cross-sections is
considered as shown in Figure 3, in which l

i
and A

i
are the length and the cross-sectional

area of the section i respectively. P
i
and ;

i
are the complex pressure amplitude of the

acoustic pressure and volume velocity at the junction of the sections i!1 and i respectively.
If the cross-sectional area of each section is su$ciently small within the limit of pure
plane-wave propagation, the acoustic pressure and the volume velocity remain the same
through each junction plane. Thus, the TWSF graph models for two connected sections,
i!1 and i, are compatible and can be directly connected in series as a ladder type as shown
in Figure 4.

If the acoustic impedance, de"ned by the ratio of acoustic pressure in a medium to the
associated volume velocity [2], at the end of the tube looking outward from the tube Z

a
is

considered, the relationships between the acoustic impedance and the states at the end
P
N

and ;
N

is

Z
a
"

P
N
;
N

. (10)



Figure 4. TWSF graph model of the N stepped tube.
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Thus, TWSF graph model of the stepped tube including the e!ect of the output can be
obtained by connecting the output impedance to the states P

N
and ;

N
of the tube as shown

in Figure 4.

3. ACOUSTIC PROPERTIES OF STEPWISE TUBES

For the graph model of the N stepped tube, there are N(N#1)/2 closed loops in the
model if the output acoustic impedance Z

a
is combined into the gain jco

0
tan kl

N
/A

N
is

considered. The structure of the TWSF graph model of the stepped tubes is very similar to
that of the stepped rod except the most right vertical path. Thus, the analysis scheme
presented in reference [9}11] can be applied in this problem.

The loop gain of each closed loop of the graph model passing through the ith and jth
vertical path in the graph model ¸

ij
is expressed as

¸
i,j
"A

i
tan kl

iA
tan kl

j
A

j

!

jd
j,N

Z
a

co
0
B

j
<
k/i

cos2 kl
k

for j*i, (11)

where d
j,N

is the Kronecker delta notation de"ned by

d
i,j
"G

0 for iOj,

1 for i"j.
(12)

The complex frequency response of the volume velocity at the right end of section i can be
obtained by calculating the transfer function from ;

0
to ;

i
. According to the graph model,

we see that there is only one forward path from ;
0

to ;
i
as shown in Figure 4. The gain of

the forward path is given by

F
1
"

i
<
j/1

cos kl
j
. (13)

The cofactor of this forward path, which is formed by the part of the graph model on the
right side of ;

i
, can be represented as [10]

D
i
"

N~i
+
k/0

E
i`1,N,k

, (14)

where

E
i,N,k

"G
N
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i2k/i`k~1

i2k
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2
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+
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k
<
j/1

(!¸
i2j~1,i2j

) for k*1,

1 for k"0.
(15)
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Based on equations (13) and (14), the complex frequency response ;
i
can be calculated

and represented as

;
i
"

<i
j/1

cos kl
j
+N~i

k/0
E

i`1,N,k
+N

k/0
E
1,N,k

;
0
. (16)

When the complex frequency response of the volume pressure at the right end of the ith
section is considered, there are N!i forward paths from ;

0
to P

i
. The cofactor of each

forward path passing through the gain of ( jco
0
sin kl

n
/A

n
)<n~1

m/i`1
cos kl

m
<n

j/1
cos kl

j
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formed by the part on the right of state;
n
. Then, the complex frequency response P

i
leads to

P
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n
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j
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p/0
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j/1
cos kl
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+N
k/0
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;
0

for i"N.

(17)

According to the results obtained by equation (17), the pressure and velocity response at
any location x

i
of section i can be calculated by equations (3) and (7), in which the

coe$cients P` and P~ are expressed as the complex pressure amplitude by substituting
equation (17) into equations (4) and (5).

The acoustic impedance at the input of tube seen toward the tube Z
in

is de"ned as P
0
/;

0
,

which can be calculated from equation (17) for i"0, given as

Z
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"

+N
n/1

( j(co
0
/A

n
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n
#d

n,N
Z
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N
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m
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j/1
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j
+N~n

p/0
E
n`1,N,p

+N
k/0

E
1,N,k

. (18)

4. APPLICATION IN SIMPLIFIED CASES

4.1. SECTIONS WITH EQUIVALENT LENGTH

If each section of the stepped tube has the same length, the terms of kl
i
in the graph model

will be identical and denoted as kl. Thus, each loop gain of the graph model can be
simpli"ed as

¸
i,j
"A

i
tan klA

tan kl

A
j

!

jd
j,N

Z
a

co
0
B cos2(j~i`1)kl. (19)

Since the forward path gain from;
0

to;
i
becomes cosi kl

j
, the complex frequency response

;
i
can be reduced to

;
i
"

cosi kl +N~i
k/0

E
i`1,N,k

+N
k/0

E
1,N,k

;
0
. (20)
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In the same way, the complex frequency response P
i
and the input impedance may be

rewritten as

P
i
"G

+N
n/i`1

( j (co
0
/A

n
) sin kl#d

n,N
Z

a
cos kl) cos2n~i~1kl+N~n

p/0
E
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;
0
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Z
a
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+N
k/0

E
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(21)

Z
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( j (co
0
/A

n
) sin kl#d

n,N
Z

a
cos kl) cos2n~1 kl +N~n

p/0
E
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k/0

E
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. (22)

4.2. FOR LOW-FREQUENCY RANGE

When the length of each section is small enough to reach kl
i
@1 in the low acoustic

frequency range, each loop gain of the graph model can be approximated as

¸
i,j
"A

i
kl

iA
kl

j
A

j

!

jd
j,N

Z
a

co
0
B. (23)

Thus, the volume velocity, pressure, and input impedance can be approximated by
substituting equation (23) into equations (16)}(18) is given by

;
i
"

+N~i
k/0

E
i`1,N,k

+N
k/0

E
1,N,k

;
0
, (24)
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. (26)

5. EXAMPLES

Some examples are investigated to illustrate the feasibility and performance of the
presented method. Since a tube of uniform cross-section is the simplest type which has been
discussed in many texts, calculation of the acoustic properties and wave propagation of
a uniform tube with various termination conditions by the presented method is "rst
examined.

5.1. SINGLE UNIFORM TUBE

A tube with length l and uniform area of cross-section A driven by a vibrating piston
located at the left end where x"0 and that terminated with an acoustic impedance Z

a
at
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the right end where x"l is considered. The acoustic velocity, pressure at the end 1 and the
acoustic input impedance can be calculated by equations (16)}(18) for N"1 and i"1 is
given by

;
1
"

1

cos kl#( jA/co
0
)Z

a
sin kl

;
0
, P

1
"Z

a
;

1
, (27, 28)

Z
in
"

( jco
0
/A) sin kl#Z

a
cos kl

cos kl#( jA/co
0
) Z

a
sin kl

. (29)

The resonance frequency of the tube is de"ned as that at which the input impedance is
a minimum. The determinate equation for the resonant frequency at the tube leads to

tan2 kl#b tan kl!1"0, (30)

where

b"
R2

a
(co

0
/A)X

a

#

X
a

(co
0
/A)

!

(co
0
/A)

X
a

. (31)

R
a
is the acoustic resistance and X

a
is the reactance of the acoustic output impedance Z

a
.

Thus, the resonance frequency of the tube is the root of the determinate equation given as

u"

c

l Atan~1A
!b#Jb2#4

2 B#nnB for n"0, 1, 2,2. (32)

If the tube is closed at the end x"l, the velocity at the end will be zero. The acoustic
output impedance Z

a
at the right end where x"l, becomes in"nity. According to equation

(29), the input impedance at the point 0 seen toward the tube Z
in

is given as

Z
in
"!j (co

0
/A) cot kl. (33)

Thus, the resonance frequency of the tube becomes

u"

c

l A
(2n#1)n

2 B for n"0, 1, 2,2. (34)

The results of equations (27)}(34), calculated from the derived formula based on the
presented method, are identical to the ones in texts [2, 3].

5.2. THREE-SECTION TUBE

A tube with three uniform steps, having the same length l for each section as shown in
Figure 5 is considered. The area of cross-section for sections 1, 2 and 3 of the tube are A, 2A
and 3A, respectively, and the acoustic output impedance of the tube at the right end is Z

a
. If

the acoustic output impedance Z
a

is combined into the gain jco
0
tan kl

3
/A

3
in the graph

model, the number of the closed loop of the graph model will be reduced to six. Thus, the



Figure 5. Acoustic tube with stepwise cross-sections.
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loop gain of each closed loop is

¸
1,1

"¸
2,2

"sin2kl, ¸
1,2

"1
2
cos2kl sin2kl, ¸

1,3
"1

3
cos4kl sin2kl!( jA/co

0
)Z

a
sinklcos5kl,

¸
2,3

"2
3
cos2kl sin2kl!(2jA/co

0
)Z

a
sin kl cos3kl, ¸

2,3
"sin2kl!(3jA/co

0
)Z

a
sin kl cos kl.

(35)

From the derived formula, equations (20)}(22), the complex amplitudes of the volume
velocity at node 3 and the input impedance of the tube are

;
3
"

2

cos2 kl(5 cos2 kl!3)#(3jA/co
0
)Z

a
sin kl(!5 cos2 kl#1)

;
0
, (36)

Z
in
"

(4jco
0
/15A) sin kl (24 cos2 kl!5)#Z

a
cos2 kl (9 cos2 kl!7)

cos2 kl (5 cos2 kl!3)#(3jA/co
0
)Z

a
sin kl (!5 cos2 kl#1)

. (37)

If the cross-sectional area of each section is replaced by the same area A, equations (36)
and (37) will become

;
3
"

1

(4 cos2 kl!3) cos kl#( jA/co
0
)Z

a
(4 cos2 kl!1) sin kl

;
0
, (38)

Z
in
"

( jA/co
0
) (4 cos2 kl!1) sin kl#Z

a
(4 cos2 kl!3) cos kl

(4 cos2 kl!3) cos kl#( jA/co
0
)Z

a
(4 cos2 kl!1)sin kl

. (39)

The acoustical response and property at the output terminal calculated using equations
(38) and (39) are equal to those of using equations (27) and (29) by replacing kl to 3kl. The
volume velocity at junctions 1 and 2 are

;
1
"

2 cos2 kl!2#(2jA/co
0
)Z

a
cos kl sin kl

(4 cos2 kl!3) cos kl#( jA/co
0
)Z

a
(4 cos2 kl!1) sin kl

;
0
, (40)

;
2
"

cos kl#( jA/co
0
)Z

a
sin kl

(4 cos2 kl!3) cos kl#( jA/co
0
)Z

a
(4 cos2 kl!1) sin kl

;
0
. (41)

The volume velocities obtained from equations (40) and (41) are equal to those calculated
using the equations for single uniform tube, equations (7), (4) and (5), at the location of
x
1
"l, x

1
"2l of tube length 3l.
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6. CONCLUSIONS

In this work, TWSF graph models for the single uniform tube and the multiple stepped
tubes have been developed. Based on the proposed graph model, the acoustic pressure and
velocity in the tube, and the acoustic input impedance and the resonance frequency of the
tube are directly calculated.

Compared to the classical methods, the graph model can o!er a clearer picture
representing the interaction of acoustic states, pressure and velocity. Due to the special
con"guration of the graph model, the models for two cascade sections can be directly
connected in a series. Another advantage is that the acoustic stepwise tube can be analyzed
directly based on the graph model without solving multiple sets of di!erential equations.
Moreover, the results of the analysis can be expressed as analytical and closed forms.

The developed graph model has been applied for the analysis of the tube with stepwise
cross-section. This method has the potential to be extended for the analysis of more
complex acoustical systems.
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